Electro- and Photocatalytic CO2 to CO Reduction Mechanism with Cobalt Complexes

The burning of fossil fuels is causing a global climatic emergency. In order to solve this crisis, is very important to improve the efficiency of the production of renewable energies by transforming CO2 into carbon-based fuels. In this report, the member of the DIMOCAT Josep M. Luis in collaboration with the Julio Lloret group, determined the mechanism and bottlenecks of the CO2 reduction reaction with a model cobalt catalyst. The theoretical calculations, in combination with in situ measurements, pinpointed an elusive cobalt(I) carbonyl intermediate, which is formed very early in the reaction and is responsible for one of the most problematic bottlenecks in the CO2 reduction process. The mechanistic studies allowed the identification the bottlenecks of the reaction and the design of a photocatalytic strategy to break the carbonylic compounds  and then strongly improve the efficient of the catalytic reduction of the CO2.

Sergio Fernández, Federico Franco, Carla Casadevall, Vlad Martin-Diaconescu, Josep M. Luis, Julio Lloret-Fillol.

“A Unified Electro- and Photocatalytic CO2 to CO Reduction Mechanism with Aminopyridine Cobalt Complexes”

J. Am. Chem. Soc. 2019, ASAP




NATURE CHEMISTRY: A web server to predict future catalysts

Computer-aided design of chemical catalysts and enzymes

Making chemical reactions faster or more selective can be achieved by catalysts, which can be biomolecular enzymes or transition-metal molecules. Engineering these catalysts to provide specific functionality on demand has been a long-term dream by many chemists. In a recent contribution by a team of researchers from Girona, Italy and Saudi Arabia, this dream has been brought one step closer to become reality. The team focused on finding numerical descriptors that correlate (bio)molecular structure with reactivity, which allowed them to create topographic steric maps that provide a three-dimensional image of the catalytic pocket (that area of the catalyst where the actual reaction takes place). This online tool is available to the wider chemical community to quickly explore structural modifications, especially with the help of quantum-chemical calculations based on density functional theory, to rationalize the behaviour of known catalysts and/or to design improved catalysts.

The IQCC researcher involved, one of the principal investigators of the DIMOCAT group, Albert Poater, adds: “We have been working more than ten years on this project, and it is very satisfying to see the work finally out there”. The study was published recently in Nature Chemistry:

Laura Falivene, Zhen Cao, Andrea Petta, Luigi Serra, Albert Poater, Romina Oliva, Vittorio Scarano, Luigi Cavallo

“Towards the online computer-aided design of catalytic pockets”

Nat. Chem. 2019, ASAP, accepted

DOI: 10.1038/s41557-019-0319-5