DiMoCat group has recently been added as part of the XRE4S, a Catalan R+D+i Network Energy for Society.

XRE4S is a multidisciplinary and transversal ecosystem that gathers the expertise in the energy field on the main universities and research centers in Catalonia. The main goal is to promote the technology transfer and valorisation of energy technologies to industry and society. Actually, XRE4S involves 39 research groups in 14 academia centers with more than 500 researchers. This project is co-financed by the European Regional Development Fund of the European Union in the framework of the ERDF.

DiMoCat group is an interdisciplinary group of research of the IQCC of the University of Girona led by Prof. Miquel Solà and Prof. Anna Roglans. The DIMOCAT has a theoretical and computational section and another section devoted to experimental work. Actually, the DiMoCat group is constituted by 30 researchers: 2 full professors, 1 emeritus, 6 associate professors, 4 post-docs and 17 PhD students. One of the main research lines is: research into perovskite solar panels as environmental alternative to silicon solar panels due to their low cost, and being lighter and more flexible. DIMOCAT wants to research in renewable energy as one of the greatest challenges facing humanity in the fight against climate change. Now, University of Girona has 4 groups in the XRE4S (LEQUIA, eXiT, GREFEMA and DIMOCAT).

Prof. Dr. Oscar Jiménez-Halla, former PhD student of DiMoCat group, promoted to the highest research level in Mexico

On 12th January 2022, Prof. Dr. Oscar Jiménez-Halla of the University of Guanajuato has been promoted to the highest research level in Mexico, the so-called “Investigador Nacional Nivel III”, for his leadership in the academic community of the country, as well as for his participation in the formation of the scientific community.
Congratulations Oscar! We are proud of you!!

A new non-covalent interaction: the nido cage-···nido cage- interaction

Carboranes are boron–carbon clusters with important applications in fields of materials, catalysis, pharmaceuticals, etc. However, the non-covalent interactions that could determine the solid-state structures and properties of such boron clusters have been rarely investigated. Herein, inspired by the coordinate bond in metallacarborane or ferrocene, the boron cluster-based non-covalent interaction (denoted as cage···cage interaction) between two nido-carborane clusters was successfully realized by using a pyridinium-based molecular barrier. The X-ray diffraction studies uncover that the cage×××cage interaction has a contacting distance of 5.4-7.0 Å from centroid to centroid in the systems reported here. Theoretical calculations validate the formation of the non-covalent interaction and disclose its repulsive bonding nature that is overcome thanks to the positively charged pyridinium-based framework. Interestingly, such bulk crystalline materials containing the cage···cage interaction show relevant properties such as full-color absorption in the visible light range and important  photothermal effect, which are absent for the control compound without carboranes. This study may offer fundamental insights into the boron cluster-based non-covalent interactions and open a new research avenue to rationally design boron cluster-based materials. Finally, we have computationally shown that this π···π interaction is also possible in classical organic systems.

Synthesis of the clusters were done by the group of Prof. Hong Yan in Nanjing University and calculations were performed in the IQTCUB institute by Prof. Jordi Poater and in the DiMoCat group by Prof. Miquel Solà.

The paper can be read in JACS Au journal through the following link: