NATURE CHEMISTRY: A web server to predict future catalysts

Computer-aided design of chemical catalysts and enzymes

Making chemical reactions faster or more selective can be achieved by catalysts, which can be biomolecular enzymes or transition-metal molecules. Engineering these catalysts to provide specific functionality on demand has been a long-term dream by many chemists. In a recent contribution by a team of researchers from Girona, Italy and Saudi Arabia, this dream has been brought one step closer to become reality. The team focused on finding numerical descriptors that correlate (bio)molecular structure with reactivity, which allowed them to create topographic steric maps that provide a three-dimensional image of the catalytic pocket (that area of the catalyst where the actual reaction takes place). This online tool is available to the wider chemical community to quickly explore structural modifications, especially with the help of quantum-chemical calculations based on density functional theory, to rationalize the behaviour of known catalysts and/or to design improved catalysts.

The IQCC researcher involved, one of the principal investigators of the DIMOCAT group, Albert Poater, adds: “We have been working more than ten years on this project, and it is very satisfying to see the work finally out there”. The study was published recently in Nature Chemistry:

Laura Falivene, Zhen Cao, Andrea Petta, Luigi Serra, Albert Poater, Romina Oliva, Vittorio Scarano, Luigi Cavallo

“Towards the online computer-aided design of catalytic pockets”

Nat. Chem. 2019, ASAP, accepted

DOI: 10.1038/s41557-019-0319-5

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *